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Abstract: For this paper, research on nonlinear cyclic characteristics of soils was 

reviewed. A new model is presented consisting of a modified equation for an initial 

loading curve and a modified equation for constructing the hysteresis loop. The 

performance of the model was evaluated by simulating the frequently utilized 

relationships of shear modulus versus shear strain and damping ratio versus shear 

strain of various types of soils accumulated over the past decades. The outcomes 

indicated that the new model presented describes the measured relationships with 

excellent correlations. The new model can simulate not only the work-hardening, but 

also work-softening behaviors of soils.  

I�TRODUCTIO� 

Since the late 1980’s, several unusually large earthquakes have occurred 

throughout the world. Those earthquakes not only destroyed innumerable houses, 

buildings and other structures such as bridges but also devastated the lives of 

thousands of people. In particular, after the Great Hanshin Earthquake, the previously 

accepted concept that the magnitude of displacement caused by an earthquake will be 

centimeters or decimeters was totally changed by the fact that measured 

displacements were on the order of meters. The lessons learned from those disasters 

require geotechnical earthquake engineers to make more accurate predictions of the 

behaviors of soil structures under large earthquake excitation. 

On the other hand, the dramatic development of semiconductor technology 

since the late 1980’s has allowed the personal computer to become an indispensable 

tool for geotechnical engineers. More and more numerical analyses, such as two and 

three dimensional linear and nonlinear stress and deformation analyses, are now 

performed on personal computers. Until relatively recently, such numerical analyses 

would have cost a great amount of money or, in many cases, would have been 

impossible. 

Although hardware capable of satisfying the calculation demands of 

geotechnical engineers is readily available, crucial technology to model the seismic 

behavior of soils has not kept pace, and, in fact, has fallen far behind. In this paper, a 

new constitutive model simulating cyclic characteristics of soils is proposed. It is 

intended not only to provide a better simulation of seismic behavior of soils but also 

to fully utilize the historical data accumulated during past decades. 

SIMULATIO� OF CYCLIC CHARACTERISTICS OF SOILS 

Although elasto-plastic theory has been utilized to simulate the nonlinear 



behavior of soils under cyclic loading in recent years, the most widely used models 

are still nonlinear type models. The nonlinear type models usually include two parts: 

(1) the initial loading stress-strain nonlinear curve, extended also into the negative 

domain, usually called a initial loading curve, skeleton curve or backbone curve, and 

(2) the constructed hysteresis loop described by subsequent unloading and reloading 

stress-strain curves. In this paper, the term “skeleton curve” will be used to refer to 

the initial loading curve, because it will represent the envelope of the stress-strain 

relationship in cases where stress degradation occurs. Although several skeleton 

curves have been proposed in the past (Kondner and Zelasko 1963; Hardin and 

Drnevich 1972; Matasović and Vucetic 1993; Nakagawa and Soga, 1995; Ni et Al. 

1997), a rule first suggested by Masing (1926), known as “Masing’s Rule”, has been 

commonly utilized in most research to construct the stress-strain hysteresis loop. By 

utilizing Masing’s Rule, the nonlinear stress-strain relationships of soils under cyclic 

loading can be constructed as illustrated in Figure 1 (Ishihara, 1996). 

Let the initial loading stress-

strain curve be expressed by Eq. (1), 

with the extension in negative domain.  

)(γτ f=   (1) 

where τ and γ represent shear stress 

and shear strain, respectively. 

Masing’s Rule assumes that: 

(1) the shear modulus on each loading 

reversal is equal to the initial tangent 

modulus for the initial loading curve; 

and (2) the unloading stress-strain 

relationship keeps the same shape as 

that of the initial loading curve in 

negative domain but is magnified by a 

factor of two, while the reloading 

stress-strain relationship has the same 
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Figure 1 Construction of unloading and 

reloading based on Masing’s Rule 

(Ishihara, 1982, 1996) 

shape as that of the initial loading in the positive domain also magnified by a factor of 

two. Therefore, as shown in Figure 1, if loading reversal occurs at point A where 

shear strain is equal to γa and shear stress is equal to τa, then the subsequent unloading 

from the reversal point A can be expressed by Eq. (2a). 

( )2/)(2/)( aa f γγττ −=−       (2a) 

If the unloading curve defined by Eq. (2a) reaches point B in the negative 

domain, the stress-strain curve is assumed to follow the initial loading curve further 

in the negative domain. If the reloading takes place at point B, the stress-strain curve 

for the reloading is given by an equation similar to Eq. (2a) in which the signs of aτ  

and aγ are changed. That is: 

( )2/)(2/)( aa f γγττ +=+       (2b) 

If the initial loading curve is intersected again at point A during the reloading, 

further loading is assumed to following the initial loading curve in the positive 

domain. Similarly, if the initial loading curve is intersected again at point B during 

the unloading, further loading is assumed to following the initial loading curve in the 

negative domain. Pyke (1979) stated that this should be considered as a third rule 



added to the original Masing’s Rule. In order to be applicable to irregular cyclic 

loadings, Pyke (1979) mentioned that a fourth rule should be also added to the three 

listed above, i.e., if the current loading or unloading curve intersects the curve 

described by a previous loading or unloading curve, the stress-strain curve follows 

that previous curve. 

For such a constructed hysteresis loop (Figure 1), the area of the loop ( W∆ ) is 

the strain energy dissipated in the given unloading and reloading cycle. The strain 

energy of a linear material corresponding to the stress-strain level (τa, γa) is defined 

as:  

aafW γγ )(
2

1
=         (3) 

The damping characteristics of the soil (represented by the damping ratio, D), 

is defined as: 

W

W
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∆
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        (4) 

Ishihara’s (1982) research indicated that by applying Masing’s Rule to 

hyperbolic type initial loading curves, the damping ratio defined by Eq. (4) can be 

computed as: 
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The initial loading curves are customary expressed by either hyperbolic type 

(Kondner and Zelasko 1963; Hardin and Drnevich 1972) or Ramberg-Osgood type 

(Ramberg and Osgood 1943; Richart 1975; Hara 1980) models. As the stress is an 

implicit function of strain in Ramberg-Osgood type models, hyperbolic type models 

are more often used in practice. 

Of hyperbolic type models, the most famous and most widely used model is 

the one initially proposed by Kondner and Zelasko (1963) (referred to as KZ model 

hereafter) and lately redefined by Hardin and Drnevich (1972b). Kondner and 

Zelasko (1963) formulated the stress-strain relationship for skeleton curves by the 

hyperbolic equation as follows, 

γτ
γ

τ
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G

+
=        (6) 

where G0 is the initial tangent shear modulus at 0→γ  and τult is the shear stress when 

∞→γ and is usually called shear strength.  

For the KZ model defined in Eq. (6), Ishihara (1982) found that the calculated 

damping ratio converges to 2/π=0.637. This value is much higher than the measured 

maximum value of the damping ratio that usually ranges from 0.2 to 0.4. He pointed 

out that the KZ model is incapable of describing the soil stress-strain behavior with 

the desired degree of accuracy. 

Several individuals proposed modifications to the KZ model (Matasović and 

Vucetic 1993; Nakagawa and Soga 1995; Ni et al. 1997). Matasovic and Vucetic 

(1993) studied the behavior of fully saturated liquefiable sands under undrained 

cyclic loading and proposed a modified Kondner and Zelasko model (abbreviated as 

MKZ). In the MKZ model, the initial loading curve was expressed in a normalized 

form with respect to the vertical effective consolidation stress, vc'σ .  



( )smm

m

G

G
f

γτβ

γ
γτ

)(1
)(

*

0

*

00

*

0**

+
==       (7a) 

where vc'/* σττ = , vcmm '/0

*

0 σττ = , and vcmm GG '/0

*

0 σ= . 0mG  is the initial tangent shear 

modulus at time 0=t , 00 GGm = . 0mτ  is the shear strength of the soil. The curve-fitting 

constants 0β  and s  adjust the position of the curve along the ordinate and control the 

curvature. 

During the second and subsequent cycles, the stress-strain behavior was 

characterized by the degrading backbone curves that were defined as, 
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where, **

0

* 1 uGG mmt −= , )1( **

0

* ummt −= ττ , and vcuu '/* σ= . u  is the residual excess pore-

water pressure. Eq. (7b) represents a series of degraded stress-strain curves in the 

subsequent cycles due to the increase of residual excess pore-water pressure. This 

model significantly increases the accuracy in simulating each hysteresis loop. 

However it is uncertain in the application that, if the previous maximum shear strain 

is exceeded, which backbone curve the unloading and reloading curves should follow. 
By studying cyclic torsional shear test results, Nakagawa and Soga (1995) 

suggested a new relationship between the shear modulus ratio and shear strain as: 
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where 1α  and 1β  are material constants defining the nonlinearity of a skeleton stress-

strain curve. This relationship produces a much better curve fitting with the measured 

data. However, the coupling relationship between 1α  and 1β  creates some uncertainly 

with respect to the parameters since not all of the measured data exist in linear 

relationships within a double-logarithmic plot as indicated in their paper. 

Ni, et al (1997) proposed the modified initial loading curve as: 
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in which 2β  is a constant and rγ  is the reference strain defined by Hardin and 

Drnevich (1972b) as the ratio of shear strength and initial shear modulus. 

0Gultr τγ =         (10) 

It is noted that Eq. (9) will become the original KZ model if 2β  is set to unity. 

Although some calculated 0GG ~γ relationships were given in their paper, no 

calculated stress-strain relationships were reported. In fact, this model produces a 

much higher shear stress at a reasonable range of failure shear strain, say 0.01 to 0.1. 

For example, even for the data used in their research, the calculated shear stress at a 

shear strain level of 0.01 is as high as 2.2 times the shear strength, while it becomes 

4.6 times the shear strength at a strain level of 0.1.  

Although it was noticed two decades ago that the application of the Masing’s 

Rule would result in an overestimate of the damping ratio (Ishihara, 1982), little 

research can be found to refine this effect. Pyke (1979) proposed a modification to 

the second rule of Masing’s Rules. Instead of a factor of two, Pyke (1979) suggested 

a factor c where 

ultac ττ−±= 1         (11) 



in which the first term is negative for unloading and positive for reloading. Thus, the 

scale will normally be changed by a factor of less than two. Although, Pyke did not 

mention the effect of his modification on the damping ratio, it is not difficult to find 

that the damping ratio will converge to value given by the traditional Masing’s Rule 

when ulta ττ → .  

Wakai et al. (2001) are among the few researchers trying to solve the problem. 

Instead of Masing’s Rule, they suggested Eq. (12) for the unloading and reloading 

curves.  

γ
γγ

τ ~1

~~
~ 0

b

Ga n

+

+
=         (12) 

where G0, b and n are constants and a is dependent on other parameters, while τ~  and 

γ~  represent the parallel translated stress-strain coordinate. 

aa and γγγτττ −=−= ~~       (13) 

The contribution of Wakai et al. is the introduction of a hysteresis loop 

function rather than scaling the initial loading curve. However, because the 

parameters are unclear and hard to determine, the application of this model is difficult. 

Also, they utilized the same equation as that of the KZ model for the initial loading 

curve. This results in limitations in simulating the measured stress-strain relationships. 

PROPOSED CYCLIC STRESS STRAI� MODEL OF SOILS 

By examining the KZ model in detail, it is not difficult to notice that the 

stress-strain relationship is fully controlled by initial shear modulus and shear 

strength. For this reason, it is also called a two parameter model. As pointed out by 

Ishihara (1982), in some cases it is difficult to specify both the strain dependent shear 

modulus and damping ratio by using only two parameters. Particularly, the strain-

dependent damping ratio is automatically determined once the abovementioned two 

parameters are given. In fact, the measured data indicated that stress-strain curves 

might be above or below the curve obtained from the KZ model in the range between 

small shear strain levels and shear strain levels near failure. Also the maximum value 

of the measured damping ratio is much smaller than that automatically determined by 

the KZ model and Masing’s Rule.  

The abovementioned drawback can be eliminated simply by introducing two 

additional parameters related to the shape of stress-strain curve and the damping ratio. 

Skeleton curve 

Assume a stress-strain level near failure (for example, the maximum shear 

strain available from laboratory tests, usually ranged from 0.01 to 0.1) to be ( fτ , fγ ). 

The second shear modulus at this point can be expressed as fffG γτ /= . By 

normalizing Eq. (6) with respect to fG  and revising the equation, one obtains 
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where, fτττ =′ , fγγγ =′ , fffG γτ= , and ultffR ττ= . 

To better fit all of the test data, Eq. (14) can be modified by introducing a 

parameter, α, as: 
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or in form of original shear stress and 

shear strain, 
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When expressed as shear modulus 

ratio, one obtains 

α

γ
γ

ff

f

R

RG

G

−
+

=

1
1

1

0

 (17) 

where,  

)(1 0GGR ff −=  (18)  
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Figure 2 Stress-strain curves with 

different αααα 

Eq. (18) is derived from shear strain level of 
f

γγ = . At this strain level, Eq. (16) and 

Eq. (6) are identical. For practical use, 
f

γ  can be taken as the maximum shear strain 

available from laboratory test data.  

Note that the parameter, α, controls the shape of initial loading curve in the 

range of shear strain between small values and large values near failure. When α is 

set as α≤1, a work-hardening stress-strain curve is produced, while at values of α>1, 

a work-softened stress-strain curve is produced. This parameter, α, is referred to as 

the shape parameter of nonlinearity. Figure 2 illustrates the effect of α to the shape 

of stress-strain relationships.  

Unloading-reloading curves 

Detailed research indicated that the fitness of the calculated to the measured 

data of the damping ratio is still beyond what is expected even when the initial 

loading curve is modified to Eq. (16), if the Masing’s Rule is applied. This means that 

the assumption that the unloading and reloading curves have the same shape as the 

enlarged initial loading curve cannot properly represent the damping characteristics 

of soils under cyclic loading. To avoid the overestimation of the damping ratio, the 

shape of hysteresis loop for unloading and reloading must be modified. 

Instead of scaling the initial loading curve to construct the unloading-

reloading loop, a new function can be defined as follows:  
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where, β is a parameter related to the damping ratio and 
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B is a constant within the loop of ),( aa γτ . Thus, the second rule of Masing’s Rules 

can be modified as that the shape of the reloading curve is the same as the positive 

portion of Eq. (19) increased by a factor of two and the unloading curve has the same 

shape as the negative portion of Eq. (19) increased by a factor of two, i.e.,  



β
γ

γτ

2/)1'~(

2/)1'~(

2

1'~
0

m

mm

aa GBG

G

⋅+
=  (21) 

where aτττ ='~ , aγγγ ='~ , aaaG γτ= . 

The negative sign is for unloading and 

the positive sign is for reloading. The 

stress and strain are normalized to 

those at the reversal point A (see 

Figure 3). 

Shape parameter of nonlinearity, αααα 

It is not difficult to calculate 

the shape parameter of nonlinearity, α, 

based upon measured data between 

0GG and γ. In fact, Eq. 17 can be 

rewritten as:  
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Figure 3 Construction of unloading and 

reloading curves 
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If the measured data between 0GG and γ is known, this data can be re-plotted 

as in Figure 4. The shape parameter of nonlinearity can then be determined by 

regression analysis.  

It has been noted that in some cases the measured data does not exist as a 

linear relationship between left and right terms of Eq. (22). To obtain a better fit to 

the measured data, it is suggested to plot the measured and calculated data on the 

same graph and to obtain a better fit by adjusting the value of α. This can be easily 

done by utilizing spreadsheet software such as Excel. 
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 Figure 4 Determination of αααα Figure 5 Effect of ββββ on damping ratio 

Damping parameter, ββββ 

Compared to the shape parameter of nonlinearity,α, the damping parameter, 

β, is more complicated to determine. By introducing Eq. (18) into Eq. (5), the 

damping ratio for the proposed model can be calculated by,  
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Although for an arbitrary value of β, numerical integration is necessary to 

compute the damping ratio, the integration of Eq. (23) is possible at, 

)1(2 += mβ   (m=1, 2, 3, …)    (24) 

By plotting D vs. γ relationships of different β together with measured data as 

in Figure 5, it is not difficult to evaluate the value of β with sufficient accuracy. 

EVALUATIO� OF MODEL PERFORMA�CE 

Matasović and Vucetic (1993) performed extensive testing on several types of 

liquefiable sands. The test results obtained from Santa Monica Beach (SMB) sand 

were simulated utilizing the proposed model. Figures 6 through 8 illustrate measured 

and simulated τ vs. γ, G/G0 vs. γ, and D vs. γ relationships, respectively. For 

comparison, results calculated based on the KZ and MKZ models are also illustrated. 

It can be seen that the proposed model generally agrees with the MKZ model and 

gives much better correlations with measured data than the KZ model.  
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Figure 6 Simulation of τ~γγγγ relationship Figure 7 Simulation of G/G0~γγγγ relationship 
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Figure 8 Simulation of damping ratio Figure 9 Simulation of hysteresis loop 

One of the important aspects of the proposed model is the construction of the 

hysteresis loop between shear stress and shear strain. Figure 9 demonstrates the 

simulation of hysteresis loop for the data obtained by Matasović and Vucetic. 

Although, the asymmetric pattern occurring in the measured data was not fully 

reproduced, the results presented in Figure 9 indicate that the difference between the 

experimental and analytical curves is small, verifying that the proposed model is 



applicable to liquefiable sands.  

In fact, the asymmetric characteristics of liquefied sand can be appropriately 

simulated by adding conditions when programming. Details related to this modeling 

will be discussed in subsequent papers.  

Although it seems that the proposed model needs one more parameter than the 

MKZ model ( 0G , fR , fγ , α , and β  versus 0G , ultτ , 0β , and s ) to obtain the same 

results as shown in Figures 6 through 8, the MKZ model requires a fifth parameter, u , 

to simulate the degradation of the stress–strain relationship as shown in Figure 9. The 

calculation of u  requires an excess pore water pressure model and an effective stress 

analysis program. By solely using these five parameters, the proposed model is able 

to simulate not only the liquefaction-induced degradation but also the work-softening 

behaviors of unsaturated soils. 

CO�CLUSIO�S  

A survey of the reported literature related to hyperbolic models and Masing’s 

Rule has been performed by this author. Based on that survey, a new model for the 

simulation of the cyclic characteristics of soils is proposed. The new model modifies 

not only the initial loading curve but also the equation for constructing the hysteresis 

loop. From the study performed by this author, the following conclusions about the 

modeling of the cyclic behavior of soils can be derived. 

1) The initial loading curve of shear stress-strain relationships can be more 

accurately simulated by adding an additional shape parameter of nonlinearity, 

α. With this modification, the new skeleton equation is able to model not only 

work-hardening conditions but also work-softening conditions. 

2) The shape of hysteresis loop is not necessarily the same as that of the enlarged 

skeleton curve, but is in a different function. This function can be defined by 

introducing a damping parameter, β.  

3) The new model can be used to directly simulate saturated liquefiable sand, 

even when the sand undergoes significant cyclic degradation. 

The new model requires five parameters, 0G , fR , fγ , α , and β . Calculation 

methods for obtaining all of these parameters are illustrated. This will assist in 

understanding the model and calculating the parameters from test results.  

The new model was used to simulate G vs. γ and D vs. γ relationships most 

often utilized for various types of soils accumulated over the past decades and 

illustrated with adequate accuracy (the results will be published at later date). The 

parameters obtained can be directly utilized in the prediction of soil behavior under 

cyclic loading conditions, when measured data is not available. 

The new model can be easily coupled within a time-domain program. Even 

for an equivalent linear method program, the new model is preferable in order to 

avoid interpretation of measured G vs. γ and D vs. γ data, since, in some instances, 

direct interpretation of measured data will result in stress-strain relationships which 

do not fit the actual condition being simulated.  

Although the current model is a one dimensional model, it is possible to 

extend it into a model applicable to three dimensional stress spaces. This will be 

discussed at later date. 



ACK�OWLEDGME�TS 

The author appreciates the support and help by Mr. Robert J. Johnson, PE, GE, 

and Mr. Allen D. Evans, PE, GE, in the preparation of this manuscript. 

REFERE�CES 

Hara, A. (1980), “Dynamic deformation characteristics of soils and seismic response 

analysis of the ground,” Dissertation submitted to the University of Tokyo, Tokyo, 

Japan 

Hardin, B.O. and Drnevich, V.P. (1972a). “Shear modulus and damping in soils: 

measurement and parameter Effects.” Proc. ASCE, Vol. 98, SM6, 603-624 

Hardin, B.O. and Drnevich, V.P. (1972b). “Shear Modulus and Damping in Soils: 

Design Equation and Curves.” Proc. ASCE, Vol. 98, SM7, 667-692 

Ishihara, K. (1982). “Evaluation of soil properties for use in earthquake response 

analysis.” International Symposium on 9umerical Models in Geomechanics, 

Zurich. 

Ishihara, K. (1996). “Soil behavior in earthquake geomechanics.” Oxford Science 

Publication 

Kondner, R. L., and Zelasko, J. S. (1963). “A hyperbolic stress-strain formulation of 

sands.” Proc. 2
nd

 Pan Am. Conf. on Soil Mech. And Found. Engrg., Brazilian 

Association of Soil Mechanics, São Paulo, Brizil, 289-324 

Masing, G. (1926). “Eigenspannugen und Verfestigung beim Messing.” Proc. 2
nd

 Int. 

Cong. On Appl. Mech., 332-335. 

Matasović, N. and Vucetic, M. (1993). “Cyclic characterization of liquefiable sands.” 

Journal of Geomechanical Engineering, Vol. 119, 9o. 11, 1805-1822 

Nakagawa, K. and Soga, K. (1995). “Nonlinear cyclic stress-strain relations of soils.” 

Third International Conference on Recent Advances in Geotechnical Earthquake 

Engineering and Soil Dynamics, St. Louis, April 2-7, 57-60 

Ni, Shean-Der, Siddharthan, Raj V. and Anderson, G. (1997). “Characteristics of 

Nonlinear Response of Deep Saturated Soil Deposits.” Bulletin of the 

Seismological Society of American, Vol. 87, 9o. 2, 342-355. 

Pyke, R. (1979). “Nonlinear soil models for irregular cyclic loadings,” Journal of 

Geotechnical Engineering, ASCE, Vol. 105, 9o. GT6, 715-726. 

Ramberg, W., and Osgood, W. R. (1943). “Description of stress-strain curves by 

three parameters.” 9ACA Tech. 9ote 9o. 902, Washington, D.C.  

Richard, F.E., Jr., (1975). “Some effects of dynamic soil properties on soil-structure 

interaction.” Journal of Geotechnical Engineering, ASCE, Vol. 101, 9o. GT12, 

1193-1240. 

Seed, H.B. and Idriss, I.M. (1970). “Soil moduli and damping factors for dynamic 

response analyses,” Report 9o. EERC 70-10, Earthquake Engineering Research 

Center, University of California, Berkeley. 

Wakai, A., Ugai, K., and Sato, M. (2001). “Finite element simulation for dynamic 

centrifuge test of a simple slope”, 10th International Conference of the 

Association for Computer Methods and Advances in Geomechanics, pp.989-992, 

Tucson AZ, USA 


